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Formulas are obtained for the mean absorption time of a set of k indepen- 
dent random walkers on periodic space lattices containing q traps. We 
consider both discrete- (here we assume simultaneous stepping) and 
continuous-time random walks, and find that the mean lifetime of the set of 
walkers can be obtained, via a convolution-type recursion formula, from 
the generating function for one walker on the perfect lattice. An analytical 
solution is given for symmetric walks with nearest neighbor transitions on 
N-site rings containing one trap (or q equally spaced traps), for both 
discrete and exponential distribution of stepping times. It is shown that, as 
N---~ co, the lifetime of the walkers is of the form TakN 2, where T is the 
average time between steps. Values of a~, 2 ~< k ~< 6, are provided. 

KEY WORDS:  Multiple trapping; mean absorption time; lattice random 
walks. 

1, I N T R O D U C T I O N  

A n  i m p o r t a n t  p rob lem in r a n d o m  walk  theory  is the eva lua t ion  o f  the  
average number  o f  steps tha t  a walker  on a per iod ic  space lat t ice conta in ing  
t raps  at  some preass igned sites requires to take  before  t rapping .  This  p r o b l e m  
arises, for  instance, when some physical  or  b io logica l  p h e n o m e n a  tha t  involve 
the  t r anspo r t  o f  exci ta t ion energy th rough  a ne twork  o f  molecules  to special- 
ized centers  are  mode led  by r a n d o m  walks.  Examples  o f  these are  luminescent  
emission f rom a po lymer  (1) or  an  organic  crystal  (2) and  p r ima ry  processes in 

photosynthes is .  ~a,4) 
Assuming  tha t  a walker  has the  same p robab i l i ty  o f  s tar t ing f rom any  

n o n t r a p p i n g  site, Mon t ro lF  ~> ob ta ined  exact  ana ly t ica l  results for  the mean  
lifetime o f  one walker ,  for  r a n d o m  walks on  lattices with per iod ic  dis t r ibu-  
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tions of traps, or, equivalently, on finite lattices with periodic boundary 
conditions containing only one trap. His method, which employs generating 
function techniques, constituted an alternative approach to previous machine 
calculations ~6~ for the same process. Subsequently, this method has been 
applied to study the effect on trapping times due to lattice vibrations, ~7~ 
non-nearest-neighbor transitions, tS) and random distributions of traps. C9~ 

Here, we employ the generating function technique to study the mean 
absorption time of a set of random walkers. That is, we consider the successive 
trapping of a number of walkers on a finite lattice where some sites act as 
irreversible traps. The motivation of this work is a recent model for the 
energy trapping center in a photosynthetic unit proposed by Fong31~ As a 
main feature, this model requires the arrival of two excitons at the active 
center before the chemical reaction can be triggered. It is our aim to investi- 
gate the duration of the kind of many walker process implied by this model. 
The emphasis in this paper is on development of techniques and methodology 
rather than on applications. 

We shall introduce a formalism which is applicable to any number of 
walkers on a finite, d-dimensional lattice with periodic boundary conditions 
(d-torus) and which contains traps at fixed points. We shall assume that: 
(i) all walkers have the same probability of starting from any nontrapping 
point, and (ii) the walkers are independent, that is, they do not interfere with 
each other, thus allowing multiple occupancy of a single site at a given time. 
We find it convenient to refer first, in Section 2, to discrete-time random walks, 
and thus we shall further assume there that (iii) the walkers step at the same 
times and these steps occur at fixed time intervals. In Section 3, we relax this 
last assumption and derive multiple-trapping formulas for continuous-time 
variable, whereby walkers step according to a common but otherwise arbi- 
trary probability density. Subsequently, in Section 4, we present a detailed 
application for k walkers on one-dimensional rings containing one trap (or q 
equally spaced traps), each walker with an equal probability to reach any 
nearest neighboring site on a given step. We consider two cases: stepping at 
regular time intervals and exponentially distributed stepping times. 

2, G E N E R A L  F O R M A L I S M  

We shall briefly review, ~9) in a form suitable for generalization, the 
formalism for the trapping of one walker by q traps, before proceeding to the 
general case of k walkers in the presence of q traps. 

Let us consider a d-dimensional periodic lattice containing N sites and 
suppose that (irreversible) traps exist at the set of q points Q = {sl, s2 ..... sq}. 
Let F,(s0) be the probability that a walker, which starts to walk at site So r Q, 
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is trapped at the nth step, and let us define the generating function of the set 
{F.(so)} as  

F(so, z) = ~ F,(so)z" (1) 
n = l  

Then, if a walker has the same probability of being at any nontrapping point 
on the lattice at the beginning of his walk, the average number of steps 
required to be trapped is given by 

1 ~. ~ r(so; z) ~=1 (2) 
(n)(l'q) N -  q so~o 

Now, if we introduce the expression 

R ~ ' '  = ~, ~ Fj(s0), R~o z'~' = 0 (3) 
SoCQ t = 1 

we have that 

R(~ l'q) - --n-l~ = ~. F~(so) (4) 
S o l o  

and thus, in terms of the generating function of the R~ '~), 

R~l"~)(z) = ~ R?'~)z" (5) 
n = l  

Eq. (2) is expressed as 

1 d (1 - z)R(I'")(z) ~=1 (6) 
(n)(l'q) = N - q dz 

The function R(~'q)(z) can be related to the generating function P(s;  z) 
for walks which start at the origin on the perfect lattice (i.e., without traps). 
This function is in turn obtained in terms of the basic function p(s) that 
specifies the detailed nature of the walk. p(s) is the probability that any step 
results in a displacement s by a walker. Briefly, it can be shown ~ that, on a 
lattice with periodic boundary conditions, 

m - 1  m - 1  

P(s;  z)  = N -1 ~ ... ~ [exp(2~ris.k/m)] [1 - zA(2rrk/m)] - I  (7) 
/~1=0 /r 

where m a = N and where •(O), the structure function for the walk, is the 
Fourier expansion ofp(s),  i.e., 

a(O) = ~ p(s) exp(iO.s) (8) 
8 

P(s;  z) generates the numbers {P,(s)}, where P,(s) is the probability that a 
walker, starting at the origin, reaches site s at the nth step, independently of  
how many previous visits he has already had at s. 
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where 

In order  to relate R(~,~)(z) to P(s ;  z), we first write F(s0; z) in the form 

q 

F(so ;z )  = E f(s ,  - So;Z) (9) 
l = l  

f(s~ - So; z)  = ~ A(s~ - So)Z ~ (10) 
n = l  

and where f~(sz - so) is the probabili ty that  a walker, on the perfect lattice, 
starting from so and avoiding the sites s,~ E Q, m r !, reaches site st for  the 
first time. The {f~(sz - So)} satisfy the set of  equations 

~ E P~-k~(sz -- Sm)fk~(Sm -- So) = P~(s, '-- So), 1 ~< l < q, So ~ Q 

m=l ~=1 (11) 

Equat ions (11) merely state the fact that  the family of  n-step walks 
between So and s~ (1 ~< l ~< q) that  give rise to P~(sz - So) can be separated 
into different groups according to which of  the sites Sm ~ Q is visited first. 
By multiplying (11) by z ~ and then summing over all n, we find 

q 

P(s, - S m ;  z)f(Sm -- SO; Z) = P(sl -- So; Z), 1 ~< 1 ~< q (12) 

Finally, by taking into account  Eq. (9), and noting that  Eqs. (3) and (5) 
imply 

1 
R(X'q)(z) = 1 - z E F(so; z) (13) 

So~Q 

the resolution of  the linear system (12) for  thef ( s~  - So; z) yields the desired 
expression for  R(~.q)(z) in terms of  the basic function P(s ;  z). In particular, 
for  the special cases of  one and two traps, we obtain, respectively 

1 1 
(14) R(l'l)(z) = (1 - z)2P(0; z) 1 - z 

and 

2 "2 
R(l'2)(z) = (1 - z)Z[P(O; z) + P(s2 - sl;  z)] 1 - z (15) 

In arriving at Eqs. (14) and (15), we have employed the conservation 
condit ion 

~ P ( s ;  z) = (1 - z) -1 (16) 
$ 

With regard to the significance of  the numbers R(~ ,q), it is interesting to 
note  that  R~ 1,1) is the average number  o f  distinct sites visited in an n-step walk 
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(not including the starting point). More elaborate definitions in terms of 
visited sites can be assigned to R~, ~) for q > 1. 

k Walkers  and q Traps 

We consider next two independent walkers on the lattice that step at the 
same times and with initial positions at sites ro and So, neither of  these a trap. 
The probability for one walker to be trapped at the nth step, conditioned to 
the other walker being trapped during this n-step walk, is given by 

;,I--1 

G,(r0, So) = F,(ro) F,(so) + F,(so) ~ F,(ro) (17) 
i = l  J=l 

Then, the average number of steps required for the two walkers to be trapped, 
independently of what their initial positions were, is 

1 ~ .  ~ G(ro, so; z) (18) (n)(2"q) = ( N  - q)2 ~o.~o~Q Oz 1 

where 

G(ro, So; z) = ~ G~(ro, So)Z" (19) 
r im1 

In analogy with the one-walker case, the employment of  Eqs. (3) and (4) in 
Eq. (17) permits the mean lifetime of the two walkers, Eq. (18), to be expressed 
a s  

1 d (1 - z)R(2'~(z) z=l (20) 
(n)(2"q~ = ( N  - q)2 dz 

where R(2.~(z) is the generating function for the square of  R~ '~, i.e., 

RC2.q~(z) = ~ [R~,~)]Zz'~ (21) 
n = l  

This function can be evaluated from the one-walker function R (a,q)(z) invoking 
the convolution property of the z-transform. From Eqs. (5) and (21), we 
obtain the relation 

RC2.~>(z ) = ~ R(1.~(z,-1)R(l.~(zz,)z,-1 dz' (22) 
o 

where the contour of integration is the unit circle [z[ = 1. 
By following the same procedure we have just outlined for the one- and 

two-walker cases, we can easily show that the mean absorption time for a 
set of  k walkers, stepping at the same times, is given by 

t d (1 - z)R~ (23) 
(n)(k'q) - ( N  - q)k dz l~=1 
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where 

R(~,'O(z) = [R. '  ] z" (24) 
. = 1  

We omit details of the derivation of Eq. (23) to avoid cumbersome notation 
and near repetition. 

Similarly, the k-walker function R~,q~(z) can be related to its lower order 
counterparts by means of the recursion relation 

R(k'q)(z) = ~ o R(l"q)(z'- I)R(~- 1,q)(zz,)z,-1 dz' (25) 

thus reducing the problem of the evaluation of (n) (~'~) to the repeated use of 
Eq. (25), provided the one-walker function R(1,a)(z) is known explicitly. 

We observe that the statistics for the trapping of k walkers is directly 
related to the kth power of the one-walker numbers R~ 1,q). The simplicity of 
this result reflects the fact that the walkers under consideration have been 
supposed to be independent from each other. The convolution relation (25) 
expresses this independence in a different form. 

Finally, we find it convenient to introduce another family of generating 
functions closely related to the {R(~'q)(z)}. The kth member of this family, 
which we denote by S(k'q)(z), generates the kth power of R~ l'q) + q, i.e., 

S(~'q)(z) = ~ (R~ ~'~ + q)kz'~, k = O, 1, 2 .... (26) 
n = O  

Comparing (24) with (26), we note that 

S~'q'(z) = l=o ~ (~)  qk-'R~''q'(z) (27) 

or, alternatively, that 

R~'q)(z) = ~ ( - 1 )  ~-' qk-'S("q)(z) (28) 
l = 0  

where 

R(~ - S(~ = 1/(1 - z) 

Combining (27) and (28) with (23), we obtain 

1 d (1 - z)S(k'q~(z) ~=1 
(n)~k'q) = (N - q)~ dz 

- ~ .  n )  ~z.'~) 
| = 1  

(29) 

(30) 
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Also, 

S(k,q~(z) = ~ S(l,~)(z,- 1)S(k- 1.~)(zz,)z,-1 dz' (31) 
o 

and, in particular, 

S~,~(z) = [(1 - z)2P(0; z)] -~ (32a) 

S'~,2'(z) = 2{(1 - z)2[P(0; z) + P(s2 - sl; z)]} -1 (32b) 

The simpler form which S~'q~(z) has in comparison with R~,q~(z) makes the 
convolution relation (31) easier to handle than Eq. (25). For  this reason, 
Eq. (30) is a practical alternative to Eq. (23) in the evaluation of multiple- 
walker lifetimes. 

3. MULTIPLE TRAPPING FOR C O N T I N U O U S  
T I M E  VARIABLE 

The preceding results can be used as a basis for the analysis of the 
multiple-trapping problem for continuous-time random walks. It is within 
the framework of a continuous-time variable that we can relax assumption 
(iii) of Section 1 on simultaneous stepping at regular time intervals. 

Following Montroll, ~11) we shall assume that jumps are made at random 
times q ,  t2 ..... where the random variables 

7"1 = q ,  T2 = t 2 -  tl .... , Tn = t ~ -  t , -1 

have a common density r Thus, r is the probability density for a step to 
occur at time t. For  convenience we also introduce the probability densities 
{r for the occurrence of the nth step at time t. These densities are related 
to each other by the convolution integral 

~o(t) = 8 (0 ,  ~ . ( t )  = d ~ - ~ ( t -  ~-)r n = 1, 2 . . . .  (33)  

As in the previous section, we consider first the problem of one walker and q 
traps. The probability density F(so, t) that a walker, starting his walk from 
So r Q, is trapped at time t is given by 

F(so, t) = ~ F.(so)~b.(t) (34) 
~ . = 1  

and the Laplace transform of F(so, t), 

I: F(so, u) = dt e-~rF(so, t) (35) 
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has the form 

F(so, u) = ~. F~(so)[r ~ = F(so; r (36) 
n = l  

where r is the Laplace transform of ~b(t), 

~(u) = dt e-~'t~(t), ~(0) = 1 (37) 

and F(so; ~(u)) is the generating function (1) with z set equal to ~(u). Assuming 
again that the walker has the same probability of starting his walk from any 
nontrapping point, the mean time for trapping is given by 

J: 1 Z dt tF(so, t) (38) ( t J l ' ~  = N------q ,o~O 

or, in terms of F(s0, u), by 

1 s~  aP(So,  U) I (39) 

Now, we introduce expressions analogous to R~ ~'~ and its generating function 
R(l,q>(z). These are 

gf: T(~'g)(t) = d~" F(so, ~') (40) 

and its Laplace transform 

~cl'q~(u) = dt e-~T~l .q ' ( t )  = ~ u-iF(so; ~(u)) (41) 
So lo  

which, in terms of R~ ~'~ and R(~'q~(z) take the form 

T(~'~ = dr  W( t  - ~r) R~l'~)~b.(z) (42) 
rl=O 

and 

where W(t), 

= (43) 

q~(t) = d7 ~(~-) (44) 
t 

is the probability that the walker remains fixed in the time interval (0, t) and 
~'(u) is its Laplace transform. From Eqs. (39) and (41) we obtain for the 
mean lifetime ( t )  <l,q) the expression 

1 
d u~Cl.q~(u) , = o (45) (t)(l'~) = N - q 
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and this together with (43) and (6) leads to the simple (and expected) 
result~z) 

( t )  (1"~ = T ( n )  C1"~ (46) 

where T is the average time between jumps, 

fo T = dt t~b(t) (47) 

The mean lifetime of two walkers on the lattice, with the same density 
~b(t), is given by 

1 ~o~f/dttG(ro, So, t) (48) (t)(2'~ = ( N -  q)2.o, Q 

where 

G(r0, So, t) = F(so, t) d~ F(ro, r) + F(ro, t) dr  F(so, r) 

But since 

we also have 

where 

(49) 

G(ro, So, t) = (d /d t ) [T'~'q)( t ) ]  2 (50) 
SOor0~Q 

1 d uT(2,O(u ) ==o 
(t)'~'q~ = ( N  - q y  du (50 

~-~j,_,~ - u') au' (52) 

and where y is such that all the singularities of T(l'~>(u) lie to the left of  the line 
R e u  = 7. 

The above results can be easily generalized to the case of k walkers, all 
with the same density r We obtain the following general expression for 
their mean lifetime: 

(t)(k'q) = ( N  - q)k du u~(~'~)(u) ~=o (53) 

where the function T(~'q)(u) satisfies the recursion relation 

2hg,O(u) = 1 fv+,~ f '( l"q)(u')T(~-l"~ u _ u') du' (54) 
2widv_~| 

These, together with (43) and the results of the previous section, permit the 
evaluation of ( t )  ok'~ from the basic functions p(s) and r that specify the 
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nature of the walks. In particular, the choice ~b(t) = 3(t - T), which corre- 
sponds to simultaneous stepping at regular times, implies that 

T(k'q~(t) = R(, k'q~, n T  <<. t < (n + 1)T (55) 

or, in Laplace space, that 

n = l  

= u-l(1 _ e-rU) ~ R~'q)e-~r~ 
n = l  

= ~(u)R(~'q)(r (56) 

which in turn leads to the result 

( t )  (~'q) = T ( n )  (k'q) (57) 

Equation (57) is in general not true for k > 1. 
An alternative, and more practical, expression for the mean lifetime 

( t )  (~'q~ is 

(t)(k'"~ = ( N  - q)k = 

(58) 
where 

and where 

0~.o) 1 (~+'| O,l.~)(u,)O(~_l.q)(, 
= 2-g i j~_~o~ - u ' ) d u '  

O(~'~)(u) = ~(u)S(~'")(~(u)) 

(59) 

(60) 

4. MEAN ABSORPTION T IME FOR k WALKERS 
ON O N E - D I M E N S I O N A L  RINGS 

We are now in a position to apply the formalism to a concrete situation, 
specifically to the example of symmetric walks on a one-dimensional ring 
with nearest neighbor transitions. In this case one has (11~ 

1 ~ 1  exp(27r ik /N)  ~ 1 W ~ +  W N-~ 
P ( 1 ; z ) = ~ k = o l  - - - z ~ N )  = (1  - z 2 )  1/2 1 - W N (61) 

where 

W = (l[z)[1 - (1 - zZ) 1/2] (62) 

4.1. Simultaneous Stepping at Regular Time Intervals 

We consider first one trap only, and then we extend the results to the 
case of q equally spaced traps. 



Mult iple Trapping of Random Walkers on Periodic Lattices 139 

O n e  W a l k e r .  Montrol l  (s) has shown tha t  for  a ring of  N particles with 
one t rap  

( n )  (L~, = N ( N  + 1)/6 (63) 

T w o  W a l k e r s .  As shown in the appendix,  the generat ing funct ion 
P(0 ;  z) can be factorized as follows: 

P(0;  g) = i~I~=1 {l - -  Z cos[2~r(2j - 1)/2N]} 
FI~=0 {1 - z cos(2rrj/N)} (64) 

where 

f N/2,  N even (65) 
M = I . (N - 1)/2, N odd 

thus allowing Eq. (31), for  k = 2 and q = 1, to be written as 

l M ]_~ 

x ( z ' - -  1)(1 - zz ' ) I - -  I z ' -  cos 
j=z 2N 

x 1 - zz'  cos 
j=~ 2 N  

When lzl 
unit  circle are simple poles located at  z '  = 1 and at 

z~ = cos[27r(21- t ) /2N],  1 = 1 .... , M (67) 

Therefore,  by using the method  o f  residues, we find 

S(2,1)(z) _= i-i~=1 [1 - cos(21rj/N)] S(1.1)(z ) 
y ] ~ - { T  - -  co-s[2-~(2j ~ l ~ N ] }  

i~=~1 1 1-i~=o [zt - cos(2crj/N)] 
+ = (1 - z~) 2 1-i~=z;j~---~ {z----~ : c o ~ - - -  D /2N] )  

• s ( l" l ' (z , z ) ,  Izl < 1 (68) 

Now,  f rom Eqs. (32a) and (64) 

]--~M=I [1 - cos(2~rj/N)] 
1-I~=z {1 - cos[2~r(2j - 1)/2N]} = lira [(1 - z )P(0;  z ) ] - i  

(66) 

< 1, the singularities o f  the integrand in (66) lying within the 

= 1 + lim ~ (R~ 1.1~ R(1 - -  . . n Z 1 ) , .  = N 
1 ) ~ n  

Z-~I n=l 

(69) 
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where the last equality follows from the requirement that, R~ '~) being the 
average number  of  distinct sites visited in an n-step walk, l im,~= Rk 1,~) = 
N - 1. In the appendix it is also shown that  the prefactor o f  S(~ .~)(z : )  can be 
reduced to the form 

1 1 ~ =  o [z~ - cos(2~r j /N) l  = 2 2 + z, (70) 
(1 - zl) 2 FI~=1::~, {z~ - cos[2~r(2j - 1)/2N]} N 1 - z, 

Thus, 

2 z~=l 1 + zz S(1 .Z)(z:) ,  ]z I < 1 S(2'1)(z) = N S ( I ' I ) ( z )  - N = 1 - zl (71) 

Finally, by combining Eq. (30) for  k = 2 and q = 1 with Eq. (71), and taking 
into account  that  dS(~'~)(z) /dz  is analytic for  [z] < 1, we obtain for the life- 
time <n> <2"1) the expression 

N -  2 2 ~ 1 + zz 
<n>(2.1) <n>(1.1) + S(1,1)(zz) (72) 

N 1 N ( N  - -  1)2iE=l/-~ 1 - -  Z l 

k Walkers. By substituting Eq. (71) into (31), for  k = 3 and q = 1 one 
can readily see that, when ]z] < 1, all the singularities contributing to the 
resulting contour  integral come again f rom the function S<l ' l ) (z ' -~) ,  i.e., 
they are simple poles located at z' = 1 and at the z, defined by (32). By 
iteration, we observe that  this situation is not  altered for larger values of  k, 
and, hence, we conclude that  

2 ~t 1 +z~  
S(Z'l)(z) = N S ( ~ -  1'1)(z) - ~[ z~=l 1 - z~ S ( z -  1"1)(z:) '  

k = 2, 3,..., Izl < 1 (73) 

Furthermore,  repeated substitution of  Eq. (73) in itself yields 

S~'~)(z) = ~ (-I)'2' k- 1 N._(2j+~ ) ~.. 
]=o j l~ . . . . .  lt=l 

J 
• ~ [(1 + z,,,)/(1 - z,,,)]S(I'I)(z,~ ... z, ,z) (74) 

r t l = 0  

where z~0 - 0 and 

zz~, = cos[Z~r(2/~ - 1)/2N], Im = 1,..., M (75) 

Therefore  

1 d - z)S<k'l)(z)t~ 1 
(N - 1) ~ dzz (1 = 

i N ,k_1 ~-1 ( k - l )  
(-I)J+12 J N-~.J+I)T~ 

j= l  J (76) 
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where 
M J 

Tj = ~ ~ [(1 + zz,,)/(1 -- z,,,)]S<l"l>(z~l "" zlj) (77) 
/i = .... ~1=1 m=l 

The mean lifetime for  the k walkers is obtained by combining Eqs. (30) [for 
q = 1] and (76). 

Finally, we derive an expression for  (n) <~'~> which is valid for  large N and 
small k. The largest contribution to Tj, above, comes f rom the term Im= 1, 
m = 1 ..... j .  Fo r  this, when N is large, and with the help o f  the expression 
za ~ 1 - ~r2/2N 2 + ..., we find 

[1 + zl~JS(1,1)r~ j~ ~ 22(~+1)N 2j+3 1 -- exp(-j1/27r) (78) 
tj = 1~1 - z J  ~*lJ js/2~r2J+3 1 + exp(-jz/27r) 

Also, for the second largest contributions to Eq. (77), we have 

_.[1 + zlk~ -1 1 + z2 S(1.1)(zjx_lz2) 
u ' = J t ~ - z l  ) 1 - Z z  

22<J+l>/N2J+3 1 - exp[(32 + j - 1)1/2~r] (79) 
~ 32(32 + j - 1)3/2~r 2j+3 1 + exp[(32 + j - 1)~/2~r] 

Similar expressions can be obtained for 

:[1 + z~S-~  1 + z~ S(~,~(zi_~Zz) (80) 
vj = J~ l  - - -~1~]  1 - z3 

and 

1 + z l  j -2  l + z 2  2 
w i = j ( j - -  I ) ( ~ _  z~ ) ( ~ _  z2) S<l'l'(z~-2z22) (81) 

Relative values taken by these quantities for 1 ~< j ~< 8 are shown in Table I. 
We can see f rom this table that, when we consider the trapping of  a small 

Table I. Relative Values of the First Few Terms 
in Eq. (77) as Defined by Eqs . (78 ) - (81 )  

] uj/tj vj/tj wj/tj 

1 0.0044 0.0003 - -  
2 0.0203 0.0017 0.0009 
3 0,0478 0.0045 0,0046 
4 0.0858 0.0086 0.0133 
5 0.1327 0.0143 0.0287 
6 0.1872 0.0215 0.0528 
7 0.2480 0.0300 0.0871 
8 0.3143 0.0400 0.1330 
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Table II. Values for the Coefficient a~ for the Mean Lifetime of k Walkers = 
Calculated from Eq. (83) 

ill 

k 1 2 3 4 5 6 
ak 0.1666 0.2630 0.3294 0.3798 0.4202 0.4534 

i 

,~ (n) (~ , i~  ~ a k N  z. 

number of walkers on a large ring, the quantities designated by tj and uj will 
account for nearly all of  Tj (with k no greater than six, tj and uj amount to 
over 967o of Tj). And, since the second term in Eq. (30), when q = 1, is 
necessarily of lower order in N than the first term [Eq. (76)], we have for the 
mean lifetime (n)  ~k'l~ the result 

(n) (~,1~ ~ akN 2, large N (82) 

where 

a~ = ~ + ~ (-1)J+123J+~ -~2j§ k -  1 
j = l  j 

• ] j - 8 /2  1 - e x p ( - j l / 2 . )  
t 1 + exp(--jlt%r) 

+ 3_2j(32 + j _ 1)_3/2 1 -- exp[--(32 + j -- 1)lt2zr] ] 
1 T exp[--(32 + j 1)l/2~r] + ' ' "  (83) 

In Table II we give values of ak for k = 1 .... ,6.  From these we observe that 
the difference in lifetimes (n)  (k,l~ - (n)  (~- t.~) decreases as k increases. This, 
of course, is due to the fact that, on average, when a walker is trapped the 
remaining walkers have already made a number of steps. 

k W a l k e r s  w i t h  q Equa l ly  Spaced  Traps.  The analytical discussion 
of the case ofq arbitrarily located traps leads to more complicated expressions 
than those for one trap. However, when the traps are spaced regularly, with 
N/q integer, a simple relation follows immediately between (n)  ~'q~ and 
(n)  ~k'~. In this case, the N-site ring consists of q intervals separated by traps, 
each of which contains (N[q) - 1 nontrapping points. Each of the k walkers 
has the same probability of starting at any interval, but once he starts on a 
given interval, he cannot escape from it, and thus his trapping is equivalent 
to that of  a walker on a ring of N[q points with only one trap. Since the 
walkers are independent, we conclude that the mean lifetime of k walkers on 
an N-site ring with q equally spaced traps is the same as that o f k  walkers on a 
ring with N/q points, one of which is a trap, i.e., 

(n\(~.q) /,\(g.z) (84) / N  s i t e s  = \"~/N/cl =3ttes 
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The same result can be derived analytically from our general formulas. For 
Q = {0, N/q  ..... (q - 1)N/q}, Eqs. (9), (12), and (13), together with (16) and 
(61), yield 

= ~ {[(1 - z)PN,q(0; z)]-I _ 1} = qR~t~)(z) (85) 

and from this and Eqs. (25) and (23) we obtain Eq. (84). 
It is interesting to note that the validity of (84) is not restricted to either 

one-dimensional walks or nearest neighbor transitions. As long as the walkers 
are independent and the traps are regularly spaced, the q-trap problem can 
always be shown to be equivalent to a one-trap problem on a lattice with N/q  
sites (and with periodic boundary conditions). 

4.2. Exponentially Distributed Stepping Times 

We examine now the trapping of k walkers on a ring containing one trap 
when all of the walkers step according to the exponential density 

~b(t) = (1/T)e -tlr (86) 

From (86) we have 

d/(u) = 1/(1 + uT) (87a) 

OF(u) = T/(1 + uT) (87b) 

and thus (60) becomes 

T s,11,[  1 
1 -7~-~ ' \ 1 ~ !  (88) 

Due to the above relationship between 0 (1'1) and S (~'~), the evaluation of 
0 (k,~) by means of the recursion formula (59) is very similar to that already 
presented for S (k'l). Thus, from Eqs. (88) and (32a) and the factorization (64), 
we have 

1 f,~o i-IM=x [1 _+, u ' T -  cos(2~'j/N)] 

0(2'X)(u) = 2"~d_,| u' I-I51 {1 + ~ - / ~  c - o ~ - - - - "  F)/2N]} 

x 0(1,1)(u - u') du' (89) 

When Re u > 0, the singularities of the integrand in (89) lying to the left of 
the line Re u' = 0 are simple poles located at u' = 0 and at 

u, = - T - l { 1  - cos[2~-(2l- 1)/2N]}, l = 1 ..... M (90) 
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and  therefore ,  

0 (2 ,1 )@ = 

Since 

1-i~=i [1 - cos(2~j/N)] 0( i , i ) (u  ) 
]-I~=z {1 - cos[2~r(2j - 1)/2N]} 

M 1--I~=i [1 + T u ,  - -  cos(2~rj/N)] 
+ E rut FIf= i : s~ /{1  + Tu, ~ - - - -  1)/2N]} / = 1  

x 0 ( i ' i ) (u  - u,), R e  u > 0 (91) 

1 + Tu/ = cos [2~r (21-  1) /2N] = z/ 

b y  m e a n s  o f  Eqs.  (69) a n d  (70), Eq.  (9 t )  is r educed  to  

2 ~. 2 + Tu, (](i,~)( u 
O(2"i)(u) = N/~ 'a ' l ) (u)  + -N ~ =  Tul ul) ,  

(92) 

(93) 

R e u > 0  

where  

(n  - 1 y  du uO~'*)(u) ~=o  

[ N ~ - l < t ) ( i , i )  N k k = i  1) N - (2j + 1)Aj 

A t = '1 . . . . .  t, = i ,~ = i Tuz,~ 0(1, t ) (_  u, 1 . . . . .  u,,) 

~ I~=~ l+z'" 
= ( -  1 )J+iT 

zi . . . . .  Ir = i = l zl= 

x j +  1 - z l  . . . . .  z,. " +  1 - z i  . . . . .  z 

R e u >  0 

(94) 

(95) 

(96) 

Also ,  

And ,  by  fo l lowing  a n  a r g u m e n t  para l le l  to  the  one  tha t  led to  Eqs.  (73) and  
(74), we  f ind 

2 ~a 2 + Tu, Ock_i,i)(u O(~'i)(u) = Nl)(k'i)(u) + N = Tut Ul) 

= 2j k -  1 N~_(2j+l ) 
]=0 \ j l 1 . . . . .  11=I 

~--~ 2 + Tuz= 
X ~ / r ( l ' l ) ( u  . . . . . .  Ulj), 

m = o ZUlm Uli 
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Table III. Values for the Mean Lifetime 
( n }  (2,z) for Regular Steppingaand forthe D i f -  
f e r e n c e  in Lifetimes T - Z [ ( t >  (2'z) - -  T(n~ (2,z)] 
Between Exponential and Regular Stepping 

Time L a w s  b 

N (n)~Z,x~ T-l[(t)~2,1~_ T(n)~2,1~] 

4 4.74 0.2870 
8 18.18 0.2321 

12 40.00 0.2161 
16 70.24 0.2084 
20 108.89 0.2038 
24 155.96 0.2008 
40 428.40 0.1947 

= From Eqs. (30) and (76). 
b F rom Eq. (98). 

If we now examine the behavior of (t~ ~,1~ for large N, as we did above 
for (n) ~k'l~, we find that 

( t~  ~'1~ ,~ T(n~  (~'1>, large N (97) 

with (n~ (k,l~ given by Eqs. (82) and (83). This is not surprising, for, when N is 
large,~most walkers start their walk far from the trap, and then they must step 
a large number of times before trapping. These walks, on average, are well 
represented by simultaneous stepping at regular time intervals of magnitude 
T, the average time between jumps. This interpretation of the limiting form 
(97) is not restricted to the exponential density we considered, and hence, we 
expect it to be of more general validity. 

In Table III we give values, for various sizes of lattices, of the difference 
in lifetimes ( t )  (2"1) - T ( n ~  ~2'1~, i.e., 

( t ) (2 , l )  --  T(n)CZ,l~ 

- - = ,  - = , !  

(98) 

5. D ISCUSSION 

Under the basic assumption of walker independence, we have shown 
that the mean absorption time of a set of walkers is determined by the 
statistics of only one walker. This result is conveniently expressed in terms of 
a family of generating functions related by a recursion formula, and by 
means of which one constructs k-walker lifetimes from one-walker properties. 
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When one considers the case of  only one trap, the kth member of  this family 
generates the kth power of  the average number of  distinct sites visited after 
time t. 

In particular, for one-dimensional walks, we found that, although there 
are no order-of-magnitude changes, augmenting the number of  walkers on the 
lattice has a significant effect on (n)  ~'1) when k is small. We also found that 
the difference in lifetimes ( t )  ( k , 1 ) -  T ( n )  Ck,~ between exponentially dis- 
tributed stepping times and simultaneous stepping at regular intervals 
disappears as N,  the number of  lattice sites, increases. This limiting property 
should hold for arbitrary ~b(t), as well as for lattices containing more than one 
trap, provided they are widely separated. Similar properties are to be expected 
in higher dimensional lattices. However, to prove this, one would have to 
work a little harder in establishing formulas similar to Eq. (76) or (95), since 
the generating function P(s;  z) for d > 1 is not easily expressed in a dosed 
f o r m .  

I t  would be of interest to extend the multiple trapping problem studied 
here to the case of  interacting walkers. Some effects of  exciton motion on 
molecular arrays, such as deexcitation of  the network through fluorescence 
produced by exciton fusion, could be modeled in terms of interacting walkers. 

APPENDIX. FACTORIZATION OF P(0;z)  AND 
DERIVATION OF EQ. (70) 

The identity ~2~ 

j = l  

] 
+ y21 = xZN _ 2xNyN COS aN + y2N 

A 
(A1) 

when N is even, and with the choice x 2 + y2 = 1, 2 x y  = z, and a = - r r /N,  
is reduced to 

NI2  

{1 - z cos[2zr(2j - l)/2N]} = x N + yN (A2) 
J = l  

I f  instead we choose a = 0, we have 

Now, since 

N/2 

[1 - z cos(2rrj/N)] = (1 - z2)llZ(x N - yn)  (A3) 
J=0 

y / x  = [1 - (1 - z2)U2]/z 

dividing (A2) by (A3) yields the factorization (64). 

(A4) 
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On the o ther  hand,  if  we choose  x 2 + y2 = z, 2 x y  = 1, 
= - ~ r [ N  and  then c~ = 0, the  ident i ty  (A1) becomes,  respectively,  

NI2 

{z - cos[2~(2j - 1)/2N]} = x N + yN 
j = l  

and 

with 

and  

147 

with first 

(A5) 

NI2 

1 - I  [z - cos(2,rj /N)] = (z 2 - 1)II2(xN - yN) (A6) 
j = O  

x 2 = �89  + ( z  2 - 1) "~]  (A7a)  

y2 = �89 - (z 2 - 1) 112] (A7b)  

Subs t i tu t ion  o f  (AS)- (A7)  into 

1-1~/1=2o [zz - cos(2~rj /N)]  

l ~ ] : j , ,  {zz - cos[2~r(2j - 1)/2N]} 

= ~ L 2 o  [zz - cos(Z=jlN)]  (A8) 
[(O/0z) I-I~L] {z - cos[2~r(2j - 1)/2N]}]~=,~ 

leads to  (70). 

Similar ly  with N odd.  
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